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Abstract

We present an explicit construction of the basic bundle gerbes with connection over all connected
compact simple Lie groups. These are geometric objects that appear naturally in the Lagrangian
approach to the WZW conformal field theories. Our work extends the recent construction of Mein-
renken [The basic gerbe over a compact simple Lie group, L’Enseignement Mathematique, in press.
arXiv:math. DG/0209194] restricted to the case of simply connected groups.
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1. Introduction

Bundle gerbes[4,10,13,14]are geometric objects glued from local inputs with the use of
transition data forming a 1-cocycle of line bundles. In a version equipped with connection,
they found application in the Lagrangian approach to string theory where they permit to treat
in an intrinsically geometric way the Kalb-Ramond 2-form fieldsB that do not exist globally
[1,7,9,16]. One of the simplest situations of that type involves group manifoldsG when the
(local)B field satisfies dB = H withH = (k/12π) tr (g−1 dg)3. SuchB fields appear in the
WZW conformal field theories of levelk and the related coset models[8,18]. Construction
of the corresponding gerbes allows a systematic Lagrangian treatment of such models, in
particular, of the conformal boundary conditions corresponding to open string branes. This
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was discussed in a detailed way in Ref.[9]. The abstract framework was illustrated there
by the example of theSU(N) group and of groups covered bySU(N). Here we extend the
recent construction[12] of the basic gerbe withk = 1 on all simple, connected and simply
connected compact groupsG to the case of non-simply connected groupsG′ = G/Zwhere
Z is a subgroup of the center ofG, see[2,3] for other constructions of gerbes on Lie groups.
Similarly as in the case of groups covered bySU(N), the obstruction that prevents the
basic gerbe onG from descending toG′ is a cohomology class [U] ∈ H3(Z,U(1)). The
basic gerbes on groupG′ correspond to the levelk equal to the smallest positive integer
such that [Uk] = 1. Their pullback toG is thekth power of the basic gerbe onG. The
2-cochainsu such thatδu = Uk provide the essential data for their construction. We
explicitly calculateU, k andu for all G from the Cartan series and allZ. The constraints
on the levelk that we find here where first worked out in Ref.[5] by examining when the
3-formsH on the groupG′ have periods in 2πZ. This is a necessary and sufficient condition
for existence of the corresponding gerbe onG′. The aim of[5] was to calculate the toroidal
partition functions of the WZW models with groupsG′ as targets. The approach based on
the modular invariance of toroidal partition functions[11] reproduced later the same results.
The present construction opens the possibility to extend to the other non-simply connected
groups the geometric classification of branes and the calculatation of the corresponding
annular partition functions worked out in Ref.[9] for the WZW models with groups covered
by SU(N), see[6] for a different approach to the construction of annular partition function
in the WZW models.

2. Basic gerbe on simply connected compact groups [12]

We refer the reader to Ref.[13] for an introduction to bundle gerbes with connection, to
[14] for the notion of stable isomorphism of gerbes (employed below in accessory manner)
and to[9] for a discussion of the relevance of the notions for the WZW models of conformal
quantum field theory. For completeness, we shall only recall here the basic definition[13].
Forπ : Y �→ M, let

Y [n] = Y ×M Y · · · ×M Y = {(y1, . . . , yn) ∈ Yn|π(y1) = · · · = π(yn)} (2.1)

denote then-fold fiber product ofY , π[n] the obvious map fromY [n] toM andpn1···nk the
projection of(y1, . . . , yn) to (yn1, . . . , ynk ). LetH be a closed 3-form on manifoldM.

Definition. A bundle gerbeG with connection (shortly, a gerbe) of curvatureH overM is
a quadruple(Y, B,L,µ), where

1. Y is a manifold provided with a surjective submersionπ : Y → M.
2. B is a 2-form onY such that

dB = π∗H, (2.2)

3. L is a hermitian line bundle with a (unitary) connection overY [2] with the curvature
form:

F = p∗2B − p∗1B. (2.3)
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4. µ : p∗12L⊗p∗23L→ p∗13L is an isomorphism between the line bundles with connection
overY [3] such that overY [4] :

µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ). (2.4)

The 2-formB is called the curving of the gerbe. The isomorphismµ defines a structure of
a groupoid onL with the bilinear productµ : L(y1,y2) ⊗ L(y2,y3)→ L(y1,y3).

Throughout this paper,G will denote a simple connected and simply connected compact
Lie group,g its Lie algebra2 and tr the linear functional on the enveloping algebraU(g)
proportional to the trace in the adjoint representation appropriately normalized (see below).
In Ref. [12], an explicit and elegant construction of a gerbe onG with curvatureH =
(k/12π) tr (g−1 dg)3 for the minimal value ofk > 0 was given. This gerbe, named “basic”,
corresponds tok = 1 in our normalization of tr. It is unique up to stable isomorphisms.
We re-describe here the construction of[12] in a somewhat more concrete and less elegant
terms (Ref.[12] constructed the gerbe equivariant w.r.t. the adjoint action; we skip here the
higher order equivariant corrections).

Let us first collect some simple facts and notations employed in the sequel. Let

gC = tC ⊕
(
⊕
α∈∆

Ceα

)
(2.5)

be the root decomposition of the complexification ofg, with t standing for the Cartan algebra
and∆ for the set of roots in the dual oft. We identify in the standard wayt andg with their
duals using thead-invariant bilinear form trXYon g. The normalization of tr is chosen so
that the long roots viewed as elements oft have length squared 2. Letr be the rank ofg
andαi, α∨i , λi, λ∨i , i = 1, . . . , r, be the simple roots, coroots, weights and coweights ofg
generating, respectively, the latticesQ, Q∨, P andP∨ in t. The roots and coroots satisfy
α = 2α∨/tr(α∨)2. The highest rootφ =∑r

i=1 kiαi = φ∨ =
∑r
i=1 k

∨
i α
∨
i . The dual Coxeter

numberh∨ = ∑r
i=0 k

∨
i , wherek0 = k∨0 = 1. The space of conjugacy classes inG, i.e. of

the orbits of the adjoint action ofG on itself, may be identified with the Weyl alcove:

A = {τ ∈ t|tr αiτ ≥ 0, i = 1, . . . , r, tr φτ ≤ 1} (2.6)

since every conjugacy class has a single element of the form e2πiτ with τ ∈ A. SetA is a
simplex with verticesτi = (1/ki)λ∨i andτ0 = 0. Let

A0 = {τ ∈ A|tr φτ < 1} and Ai = {τ ∈ A|tr αiτ > 0} for i �= 0 (2.7)

and letAI = ∩i∈IAi for I ⊂ {0,1, . . . , r} ≡ R. We shall denote byGi the adjoint action
stabilizer of e2πiτi :

Gi = {γ ∈ G|γ e2πiτiγ−1 = e2πiτi} (2.8)

and bygi its Lie algebra. The complexification ofgi is

gCi = tC ⊕
(
⊕
α∈∆i

Ceα

)
, (2.9)

2 We use the physicist convention with eiX ∈ G for X ∈ g and i[X, Y ] ∈ g for X, Y ∈ g.
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where∆i is composed of rootsα such that trτiα ∈ Z. For i = 0,G0 = G andg0 = g. For
i �= 0,gi is the simple Lie algebra with simple rootsαj, j �= i, and−φ. Its simple coweights
arekj(τj − τi), j �= i and−τi and they generate the coweight latticeP∨i of gi.

The main complication in the construction of the basic gerbe over general compact simply
connected groups is that the stabilizersGi are connected but, unlike forSU(N), they are not
necessarily simply connected. We shall denote byG̃i their universal covers.Gi = G̃i/Zi,
whereZi is the subgroup of the center ofG̃i.Zi is composed of elements of the form e2πip

i

with p ∈ Q∨ and ei standing for the exponential map from igi to G̃i. Sinceτi is also a
weight ofgi, it defines a characterχi on the Cartan subgroup̃Ti of G̃i, and hence also on
Zi, by the formula:

χi(e
2πiτ
i ) = e2πi tr τiτ . (2.10)

The charactersχi may be used to define flat line bundlesL̂i over groupsGi by setting

L̂i = (G̃i × C)/∼
i

(2.11)

with the equivalence relation:

(γ̃, u)∼
i
(γ̃ζ, χi(ζ)

−1u) (2.12)

for ζ ∈ Zi. Note that the left and right action of̃Gi on itself defines an action of̃Gi by
automorphisms of̂Li preserving the flat structure. The circle subbundle ofL̂i forms under
the multiplication induced by the point-wise one inG̃i×U(1) a central extension̂Gi ofGi.
These extensions were a centerpiece of the construction of Ref.[12].

For I ⊂ R with more than one element, one defines subgroupsGI ⊂ G as the adjoint
action stabilizers of elements e2πiτ with τ in the open simplex inA generated by vertices
τi, i ∈ I (GI does not depend on the choice ofτ). In general,GI �= ∩i∈IGi. To spare on
notation, we shall writeG{i,j} = Gij with Gii = Gi, etc. LetgI be the Lie algebra ofGI
andG̃I its universal cover such thatGI = G̃I/ZI . ForJ ⊃ I,GJ ⊂ GI and the inclusion
gJ ⊂ gI induces the homomorphisms of the universal covers:

G̃J → G̃I

↓ ↓
GJ ⊂ GI

(2.13)

which mapZJ in ZI . GR is equal to the Cartan subgroupT of G so thatG̃R = t and for
eachI one has a natural homomorphism:

t
e2πi·
I−→ G̃I (2.14)

that maps onto a commutative subgroupT̃I coveringT ⊂ GI and sends the coroot lattice
Q∨ ontoZI . Let

aij = i tr (τj − τi)(γ−1 dγ) (2.15)
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be a one form onGij . It is easy to see thataij is closed. Indeed,

daij = i tr (τi − τj)(γ−1 dγ)2 = 0, (2.16)

where the last equality follows from the easy to check fact that the adjoint action of the Lie
algebragij (and, hence, also ofGij ) preservesτi − τj. Letχij be aU(1)-valued function on
the covering group̃Gij such that iχ−1

ij dχij is the pullback ofaij to G̃ij and thatχij (1) = 1.
Explicitly,

χij (γ̃) = exp

[
1

i

∫
γ̃

aij

]
, (2.17)

whereγ̃ is interpreted as a homotopy class of paths inGij starting from 1. It is easy to see
thatχij defines a one-dimensional representation ofG̃ij :

χij (γ̃γ̃
′) = χij (γ̃)χij (γ̃

′) (2.18)

and that for̃γ ∈ G̃ijk that may be also viewed as an element ofG̃ij , G̃jk andG̃ik, see diagram
(2.13):

χij (γ̃)χjk(γ̃) = χik(γ̃). (2.19)

As may be easily seen from the definition(2.17):

χij (e
2πiτ
ij ) = e2πi tr (τj−τi)τ = χj(e2πiτ

j )χi(e
2πiτ
i )−1 (2.20)

for τ ∈ t, seeEq. (2.10). In particular, forζ ∈ Zij :

χij (ζ) = χj(ζ)χi(ζ)−1, (2.21)

where on the right-hand side,ζ is embedded intoZi andZj using the homomorphisms
(2.13).

The construction of the basic gerbeG = (Y, B,L,µ) over groupG described in[12] uses
a specific open covering(Oi) of G, where

Oi = {he2πiτh−1|h ∈ G, τ ∈ Ai}. (2.22)

Over setsOi, the closed 3-formH becomes exact. More concretely, the formulae:

Bi = 1

4π
tr (h−1 dh)e2πiτ(h−1 dh)e−2πiτ + i tr (τ − τi)(h−1 dh)2 (2.23)

define smooth 2-forms onOi such that dBi = H . More generally, letOI = ∩i∈IOi. Since
the elements e2πiτ with τ ∈ AI have the adjoint action stabilizers contained inGI , the maps

OI � g = he2πiτh−1 ρI−→ hGI ∈ G/GI (2.24)

are well defined. They are smooth[12]. They will play an important role below. On the
double intersectionsOij :

Bj − Bi = i tr (τi − τj)(h−1 dh)2 (2.25)

are closed 2-forms but, unlike in the case of theSU(N) (andSp(2N)) groups, their periods
are not in 2πZ, in general. As a result, they are not curvatures of line bundles overOij . It
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is here that the general case departs from theSU(N) one as described in[9] where it was
enough to takeY = �Oi.

Let PI be the pulback byρI of the principalGI -bundleG→ G/GI , i.e.

PI = {(g, h) ∈ OI ×G|ρI(g) = hGI} (2.26)

with the natural projectionπI onOI and the action ofGI given by the right multiplication
of h. Following[12], we setYi = Pi and

Y = �
i=0,...,r

Yi (2.27)

with the projectionπ : Y → G that restricts toπi on eachYi. The curving 2-formB onY
is defined by setting

B|Yi = π∗i Bi. (2.28)

Clearly, dB = π∗H as required. Let us note that we may identify

Y [n] ∼= �
(i1,...,in)
im=0,...,r

Yi1···in , (2.29)

where

Yi1···in = Ŷi1···in/GI, Ŷi1···in = PI ×Gi1 × · · · ×Gin (2.30)

for I = {i1, . . . , in} with GI acting diagonally on̂Yi1···in by the right multiplication. The
identification assigns to theGI -orbit of ((g, h), γ1, . . . , γn) the element(y1, . . . , yn) ∈
Yi1 × · · · × Yin with ym = (g, hγ−1

m ).
We are left with the construction of the line bundle with connectionL overY [2] and of the

groupoid productµ. Denote byL̂ the trivial line bundlePij ×C overPij with the connection
form:

Aij = i tr (τj − τi)(h−1 dh) (2.31)

(recall that the elements ofPij are pairs(g, h) with ρij (g) = hGij ). Let L̂ij be the exterior
tensor product of the line bundlêL overPij with the flat line bundleŝL−1

i onGi andL̂j on
Gj, seeEq. (2.11). In other words,

L̂ij = p̂∗L̂⊗ p̂∗i L̂−1
i ⊗ p̂∗j L̂j, (2.32)

wherep̂, p̂i andp̂j are the projections from̂Yij to Pij ,Gi andGj, respectively. Explicitly,
the elements of̂Lij may be represented by the pairs((g, h), [γ̃, γ̃ ′, u] ij )with the equivalence
classes corresponding to the relation:

(γ̃, γ̃ ′, u)∼
ij
(γ̃ζ, γ̃ ′ζ′, χi(ζ)χj(ζ′)−1u) (2.33)

for γ̃ ∈ G̃i, γ̃ ′ ∈ G̃j, u ∈ C, ζ ∈ Zi andζ′ ∈ Zj.
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We shall lift the action ofGij on Ŷij to the action on̂Lij by automorphisms and shall set

L|Yij = L̂ij/Gij ≡ Lij . (2.34)

First note thatG̃ij acts onL̂ij by

((g, h), [γ̃, γ̃ ′, u] ij ) �→ ((g, hγ ′′), [γ̃ γ̃ ′′, γ̃ ′γ̃ ′′, χij (γ̃
′′)−1u] ij ), (2.35)

whereγ̃ ′′ ∈ G̃ij , γ ′′ is the projection of̃γ ′′ toGij andχij is given byEq. (2.17). Due to the
relations(2.18) and (2.21), Zij ⊂ G̃ij acts trivially so that the maps(2.35)define the right
action ofGij on L̂ij . The relation between 1-formAij andχij implies that the connection on
L̂ij descends to the quotient line bundleLij . Note that the curvature ofLij is given by the
closed 2-formFij onYij that pulled back tôYij becomes

F̂ij = i tr (τi − τj)(h−1 dh)2. (2.36)

Let pi andpj denote the natural projections ofYij onYi andYj, respectively. The required
relation:

p∗jπ
∗
jBj − p∗i π∗i Bi = Fij (2.37)

between the curving 2-form and the curvature ofLij follows from the comparison of
Eqs. (2.23) and (2.36)with the use of the relationρij (g) = hGij . For i = j, line bun-
dleLij is flat.

We still have to define the groupoid productµ in the line bundles over

Y [3] = �
(i,j,k)

Yijk, (2.38)

see relation(2.29). Let ((g, h), γ, γ ′, γ ′′)Gijk ∈ Yijk , whereg ∈ Oijk , h ∈ G with ρijk(g) =
hGijk , and whereγ ∈ Gi, γ ′ ∈ Gj, γ ′′ ∈ Gk. The elements in the corresponding fibers of
Lij , Ljk andLik may be defined now as theGijk-orbits sinceh is defined byg ∈ Oijk up to
right multiplication by elements ofGijk . Let

3ij = ((g, h), [γ̃, γ̃ ′, u] ij )Gijk ∈ Lij , 3jk = ((g, h), [γ̃ ′, γ̃ ′′, u′] jk)Gijk ∈ Ljk,

3ik = ((g, h), [γ̃, γ̃ ′′,uu′] ik)Gijk ∈ Lik.

One sets

µ(3ij ⊗ 3jk) = 3jk. (2.39)

It is easy to see that the right-hand side is well defined. Checking thatµ preserves the
connection and is associative overY [4] = �(i,j,k,l)Yijkl is also straightforward (the latter is
done by rewriting the line bundle elements asGijkl -orbits).

Fork ∈ Z, the powersGk of the basic gerbe may be constructed the same way by simply
exchanging the charactersχi and homomorphismsχij by theirkth powers and by multiplying
the connection forms, curvings and curvatures byk. Below, we shall use the notation [· · · ]ki
and [· · · ]kij for the corresponding equivalence classes with such modifications.
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3. Basic gerbe on compact non-simply connected groups

LetG be, as before, a connected simply connected simple compact Lie group and letZ

be a (non-trivial) subgroup of its center. LetH ′ be the 3-form on the non-simply connected
groupG′ = G/Z that pulls back to the 3-formH = (1/12π) tr (g−1 dg)3 onG. We shall
construct in this section a gerbeG′ = (Y ′, B′, L′, µ′) over groupG′ with curvaturekH ′,
where the levelk takes the lowest positive (integer) value for which a gerbe with curvature
kH ′ exists. Such a “basic” gerbe is unique up to stable isomorphisms in all cases except for
G′ = SO(4n)/Z2 where there are two non-stably isomorphic basic gerbes, both covered by
our construction.

3.1. Some groupZ cohomology

We shall need some cohomological construction related to the subgroupZ of the center
(for a quick résumé of discrete group cohomology, see Appendix A of[9]).

GroupZ acts on the Weyl alcoveA in the Cartan algebra ofG by affine transformations.
The action is induced from that onG that maps conjugacy classes to conjugacy classes and
it may be defined by the formula:

ze2πiτ = w−1
z e2πizτwz (3.1)

for z ∈ Z andwz in the normalizerN(T) ⊂ G of the Cartan subgroupT . In particular,
zτi = τzi for some permutationi �→ zi of the setR = {0,1, . . . , r} that induces a symmetry
of the extended Dynkin diagram with vertices belonging toR and kzi = ki, k∨zi = k∨i .
Explicitly,

zτ = wzτw−1
z + τz0. (3.2)

Elementswz ∈ N(T) are defined up to multiplication (from the right or from the left)
by elements inT , so that their classesωz in the Weyl groupW = N(T)/T are uniquely
defined. The assignmentZ � z ω�→ωz ∈ W is an injective homomorphism. However, one
cannot always choosewz ∈ N(T) so thatwzz′ = wzwz′ . TheT -valued discrepancy:

cz,z′ = wzwz′w−1
zz′ (3.3)

satisfies the cocycle condition:

(δc)z,z′,z′′ ≡ (wzcz′,z′′w−1
z )c

−1
zz′,z′′cz,z′z′′c

−1
z,z′ = 1 (3.4)

and defines a cohomology class [c] ∈ H2(Z, T) that is the obstruction to the existence of
a multiplicative choice ofwz. Class [c] is the restriction toω(Z) ⊂ W of the cohomology
class inH2(W, T) that characterizes up to isomorphisms the extension:

1→ T → N(T)→ W → 1 (3.5)

which was studied in Ref.[17]. The results of[17] could be used to find the 2-cocycle whose
cohomology class characterizes the extension(3.5)and then, by restriction, to calculatec.
In practice, we found it simpler to obtain the 2-cocyclec directly, seeSection 4.
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Let us choose elementsbz,z′ ∈ t such thatcz,z′ = e2πibz,z′ . Note that they are determined
up to the replacements:

bz,z′ �→ bz.z′ + wzaz′w−1
z − azz′ + az + qz,z′ (3.6)

with az ∈ t describing the changewz �→ e2πiazwz andqz,z′ ∈ Q∨. The combination

(δb)z,z′,z′′ ≡ (wzbz′,z′′w−1
z )− bzz′,z′′ + bz,z′z′′ − bz,z′ (3.7)

is a 3-cocycle onZ with values inQ∨. It defines a cohomology class [δb] ∈ H3(Z,Q∨),
the Bockstein image of [c] induced by the exact sequence

0→ Q∨ → t
e2πi·
−→ T → 1. (3.8)

Note that the replacements(3.6)do not change the cohomology class [δb]. Below, we shall
employ forI ⊂ R the lifts

c̃z,z′ = e
2πibz,z′
I ∈ T̃I ⊂ G̃I (3.9)

of cz,z′ to the subgroups̃TI , see(2.14). Note that

(δc̃)z,z′,z′′ ≡ e
2πi(δb)z,z′,z′′
I (3.10)

belongs toZI ⊂ T̃I .

3.2. Pushing gerbesGk toG′

The structures introduced in the preceding section behave naturally under the action of
Z. We have

zAI = AzI, zOI = OzI, wzGIw
−1
z = GzI. (3.11)

The adjoint action ofwz maps alsogI ontogzI and hence lifts to an isomorphism from̃GI
to G̃zI that mapsZI ontoZzI and for which we shall still use the notationγ̃I �→ wzγ̃Iw

−1
z .

The mapsOI � g �→ zg∈ OzI may be lifted to the ones

PI � y = (g, h) �→ zy= (zg,hw−1
z ) ∈ PzI (3.12)

of the principal bundlesPI . Note that ifcz,z′ �= 1 then the lifts do not compose.
Proceeding to construct the basic gerbeG′ = (Y ′, B′, L′, µ′) over groupG′, we shall set

Y ′ = Y = �
i=0,...,r

Yi, B′|Yi = kπ∗i Bi, (3.13)

where, as before,Yi = Pi butY ′ is taken with the natural projectionπ′ onG′. Note that a se-
quence(y, y′, . . . , y(n−1)) belongs toY ′[n] if π(y) = zπ(y′) = · · · = zz′ · · · z(n−2)π(y(n−1))

for somez, z′, . . . , z(n−2) ∈ Z. Then

(y, zy′, . . . , z(z′(· · · (z(n−2)y(n−1)) · · · ))) ∈ Y [n] (3.14)
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and we may identify

Y ′[n] ∼= �
(z,z′,...,z(n−2))∈Zn−1

Y [n] . (3.15)

Let L′ be the line bundle onY ′[2] that restricts toLk on each componentY [2] in the
identification(3.15), i.e. toLk

ij onYij ⊂ Y [2] . Sincez∗Bzi = Bi under the pullback by the
mapsOi � g �→ zg∈ Ozi, the curvatureF ′ of L′ satisfies the required relation:

F ′ = p′∗2 B′ − p′∗1 B′, (3.16)

where, as usual,p′1 andp′2 are the projections inY ′[2] on the first and the second factor.
It remains to define the groupoid multiplicationµ′. Let (y, y′, y′′) ∈ Y ′[3] be such that

(y, zy′, z(z′y′′)) ∈ Yijk ⊂ Y [3] . We may then write

y = (g, hγ−1), zy′ = (g, hγ ′−1), z(z′y′′) = (g, hγ ′′−1) (3.17)

with g ∈ Oijk andh ∈ G such thatρijk(g) = hGijk and withγ ∈ Gi, γ ′ ∈ Gj, γ ′′ ∈ Gk.
This permits to identify(y, zy′, z(z′y′′))with ((g, h), γ, γ ′, γ ′′)Gijk according to(2.30). We
shall use the notationiz ≡ z−1i, γz ≡ w−1

z γwz ∈ Giz for γ ∈ Gi andγ̃z ≡ w−1
z γ̃wz ∈ G̃iz

for γ̃ ∈ G̃i. Note that

y′ = (z−1g,hwzγ
′−1
z ), y′′ = ((zz′)−1g,hwzwz′(γ

′′
z )
−1
z′ ), (3.18)

z′y′′ = (z−1g,hwzγ
′′−1
z ), (zz′)y′′ = (g, h(c−1

z,z′γ
′′)−1). (3.19)

Employing the explicit description of the line bundlesLij with γ̃ ∈ G̃i projecting toγ, etc.,
we take the elements

3ij = ((g, h), [γ̃, γ̃ ′, u]kij )Gijk ∈ Lk
(y,zy′) = L′(y,y′), (3.20)

3jzkz = ((z−1g,hwz), [γ̃
′
z, γ̃

′′
z , u

′]kjzkz)Gizjzkz ∈ Lk
(y′,z′y′′) = L′(y′,y′′), (3.21)

3ik = ((g, h), [γ̃, c̃−1
z,z′ γ̃

′′,uu′]kik)Gijk ∈ Lk
(y,(zz′)y′′) = L′(y,y′′), (3.22)

wherec̃z,z′ ∈ G̃k is given byEq. (3.9). Then necessarily,

µ′(3ij ⊗ 3jzkz) = uijk
z,z′3ik, (3.23)

whereuz,z
′

ijk are numbers inU(1). That the right-hand side of the definition(3.23)does not
depend on the choice of the representatives of the classes on the left-hand side follows from
the following lemma.

Lemma 1. For z ∈ Z, ζ ∈ Zi and γ̃ ∈ G̃ij :

χiz(ζz) = χi(ζ), χizjz (γ̃z) = χij (γ̃). (3.24)

Proof. Let ζ = e2πip
i for p ∈ Q∨. Thenζz = w−1

z ζwz = e
2πiw−1

z pwz
i and

χiz(ζz) = e2πi tr w−1
z (τi−τz0)wzw−1

z pwz = e2πi tr τip = χi(ζ), (3.25)
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where we used the fact thatτz0 = λz0. The second relation in(3.24)follows immediately
from the definition(2.17)of χij and the identityτjz − τiz = w−1

z (τj − τi)wz. �

3.3. Obstruction class

It remains to find the conditions under whichµ′ is associative. InAppendix A, we show
by an explicit check that associativity ofµ′ requires that

u
jzkzlz
z′,z′′ (u

ikl
zz′,z′′)

−1u
ijl
z,z′z′′(u

ijk
z,z′)

−1 = χkl(c̃z,z′)
kχl((δc̃)z,z′,z′′)

k. (3.26)

This provides an extension of the relation (4.6) of[9] obtained forG = SU(N). It may be
treated similarly. First, we set

uz,z′ = u(0)(z0)(zz′0)
z,z′ (3.27)

and observe that, fori = jz = kzz′ = lzz′z′′ = 0, Eq. (3.26)reduces to the cohomological
equation:

δu = Uk, (3.28)

where(δu)z,z′,z′′ = uz′,z′′u−1
zz′,z′′uz,z′z′′u

−1
z,z′ is the coboundary of theU(1)-valued 2-chain on

Z and

Uz,z′,z′′ = χ(zz′0)(zz′z′′0)(c̃z,z′)χzz′z′′0((δc̃)z,z′,z′′). (3.29)

More exactly, with the use of formulae(2.10), (2.20), (3.2), (3.4), (3.9) and (3.10), one
obtains

Uz,z′,z′′ = e2πi tr[(τzz′z′′0−zτzz′0)bz,z′+τzz′z′′0(wzbz′,z′′w−1
z −bzz′,z′′+bz,z′z′′−bz,z′ )]

= e2πi tr [(τz′z′′0−τz−10)bz′,z′′−τzz′0bz,z′−τzz′z′′0(bzz′,z′′−bz,z′z′′ )] . (3.30)

The cohomologicalequation (3.28)is consistent due to the following lemma.

Lemma 2. (Uz,z′,z′′) defines aU(1)-valued3-cocycle on Z:

(δU)z,z′,z′′,z′′′ ≡ Uz′,z′′,z′′′U−1
zz′,z′′,z′′′Uz,z′z′′,z′′′U

−1
z,z′,z′′z′′′Uz,z′,z′′ = 1. (3.31)

Besides its cohomology class[U] ∈ H3(Z,U(1)) does not depend on the choice of the
cocycle(cz,z′) in the cohomology class[c] ∈ H2(Z, T) nor on the choice ofbz,z′ ∈ t such
that cz,z′ = e2πibz,z′ .

It is enough to analyze the condition(3.28)due to the following lemma.

Lemma 3. Let (uz,z′) be a solution ofEq. (3.28). Then

u
ijk
z,z′ = χk(zz′0)(c̃z,z′)

−kuz,z′ , (3.32)

solvesEq. (3.26).
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Remark. The cohomology class [U] ∈ H3(Z,U(1)) is the obstruction to pushing down the
gerbeG onG to the quotient groupG′. That the push-forward of a gerbe by a covering map
M �→ M/Γ requires solving a cohomological problemU = δu for aU(1)-valued 3-cocycle
U on discrete groupΓ , with [U] ∈ H3(Γ,U(1)) describing the obstruction class, is a general
fact, see[15]. Similar cohomological equation, but in one degree less, with obstruction class
inH2(Γ,U(1)), describes pushing forward a line bundle. As for the relation(3.32), it is of a
geometric origin, as has been explained in[9]: if we choose naturally a stable isomorphism
betweenGk and(z−1)∗Gk then the elements3−1

ij ⊗3−1
jzkz
⊗3ik determine flat sectionssijk of a

flat line bundleRz,z
′
onG. Sectionssijk are defined over setsOijk and over their intersections

Oijki ′j′k′ , they are related bysi′j′k′ = χk′k(c̃z,z′)ksijk .

Proofs ofLemmas 2 and 3may be found inAppendix B. The obstruction cohomology
class [U] ∈ H3(Z,U(1)), explicitly computed in the next section for all groupsG′, is torsion.
The levelk of the basic gerbeG′ overG′ corresponds to the smallest positive integer for which
[Uk] is trivial so thatEq. (3.28)has a solution. In the latter case, different solutionsu differ
by the multiplication by aU(1)-valued 2-cocyclẽu, δũ = 1. If ũ is cohomologically trivial,
i.e. ũz,z′ = vz′v−1

zz′ vz, then the modified solution leads to a stably isomorphic gerbe over
G′. Whether multiplication ofu by cohomologically non-trivial cocycles̃u leads to stably
non-isomorphic gerbes depends on the cohomology groupH2(G′, U(1)) that classifies
different stable isomorphism classes of gerbes overG′ with fixed curvature. This is trivial
for all simple groups except forG′ = SO(4N)/Z2 whenH2(G′, U(1)) = Z2, see[5].

4. Cocycles c and U

It remains to calculate the cocyclesc = (cz,z′), elementsbz.z′ ∈ Q∨ such thatcz.z′ =
e2πibz,z′ and the cocyclesU = (Uz,z′,z′′), seeEqs. (3.3) and (3.30), and to solve the coho-
mologicalequation (3.28)for all simple, connected, simply connected groupsG and all
subgroupsZ of their center.

4.1. GroupsAr = SU(r + 1), r = 1,2, . . .

The Lie algebrasu(r+1) is composed of traceless hermitian(r+1)×(r+1)matrices. The
Cartan algebra may be taken as the subalgebra of diagonal matrices. Letei, i = 1,2, . . . ,
r + 1, denote the diagonal matrices with thej’s entry δij with tr eiej = δij . Roots and
coroots ofsu(r+ 1) have then the formei − ej for i �= j and the standard choice of simple
roots isαi = ei − ei+1. The center isZr+1 and it may be generated byz = e−2πiθ with
θ = λ∨r = −er+1+(1/(r+1))

∑r+1
i=1 ei. The permutationzi= i+1 for i = 0,1, . . . , r−1,

zr= 0 generates a symmetry of the extended Dynkin diagram:
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The adjoint action ofwz ∈ N(T) ⊂ SU(r + 1) on the Cartan algebra may be extended to
all diagonal matrices by setting

wzeiw
−1
z =

{
e1 if i = r + 1,

ei+1 otherwise.
(4.1)

It is generated by the product:

rα1rα2 · · · rαr (4.2)

of r reflections in simple roots. We may take

wz = eπir/(r+1)




0 0 0 · · · 0 0 1

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0
...
...
... · · · ...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0



. (4.3)

Settingwzn = wnz for n = 0,1, . . . , r, we then obtain

czn,zm =
{

1 if n+m ≤ r,
wr+1
z if n+m > r. (4.4)

Sincewr+1
z = (−1)r = e2πiX for X = (r(r + 1)/2)θ, we may take

bzn,zm =



0 if n+m ≤ r,
r(r + 1)

2
θ if n+m > r. (4.5)

Explicit calculation of the right-hand side ofEq. (3.30)gives

U
zn,zn

′
,zn
′′ = (−1)rn

′′(n+n′−[n+n′])/(r+1), (4.6)

where 0≤ n, n′, n′′ ≤ r and for an integerm, [m] = mmod(r + 1) with 0 ≤ [m] ≤ r.
Let r + 1 = N ′N ′′ andZ be the cyclic subgroup of orderN ′ of the center generated by

zN
′′
. If N ′′ is even orN ′ is odd ork is even, then the restriction toZ of the cocycleUk is

trivial. In the remaining case ofN ′ even,N ′′ odd andk odd it defines a non-trivial class in
H3(Z,U(1)). Hence the smallest positive value of the level for which the cohomological
equation (3.28)may be solved is

k =
{

1 forN ′ odd orN ′′ even,

2 forN ′ even andN ′′ odd,
(4.7)

in agreement with[9]. For those values ofk, one may takeu
zn,zn

′ ≡ 1 as the solution of
Eq. (3.28).
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4.2. GroupsBr = Spin(2r + 1), r = 2,3, . . .

The Lie algebra ofBr isso(2r+1). It is composed of imaginary antisymmetric(2r+1)×
(2r+ 1)matrices. The Cartan algebra may be taken as composed ofr blocks

(
0 −iti
iti 0

)
placed diagonally, with the last diagonal entry vanishing. Letei denote the matrix cor-
responding totj = δij . With the invariant form normalized so that treiej = δij , roots
of so(2r + 1) have the form±ei ± ej for i �= j and±ei and one may chooseαi =
ei − ei+1 for i = 1, . . . , r − 1 andαr = er as the simple roots. The coroots are±ei ± ej
for i �= j and±2ei. The center of Spin(2r + 1) is Z2 with the non-unit elementz =
e−2πiθ with θ = λ∨1 = e1. SO(2r + 1) = Spin(2r + 1)/{1, z}. The permutationz0 =
1, z1 = 0, zi = i for i = 2, . . . , r generates a symmetry of the extended Dynkin
diagram:

The adjoint action ofwz ∈ N(T) is given by

wzeiw
−1
z =

{
−e1 if i = 1,

ei if i �= 1.
(4.8)

It may be generated by the product:

rα1rα2 · · · rαr−2rαr−1rαr rαr−1 · · · rα2rα1 (4.9)

of 2r − 1 reflections in simple roots. Elementwz may be taken as the lift to Spin(2r + 1)
of the matrix:




1 0 0 · · · 0 0

0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1




(4.10)

in SO(2r + 1). Setting alsow1 = 1, we infer that

c1,1 = c1,z = cz,1 = 1, cz,z = w2
z . (4.11)
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Sincew2
z projects to 1 inSO(2r+ 1), it is equal to 1 or toz. To decide which is the case,

we writewz = Oe2πiXO−1, whereO ∈ Spin(2r + 1) projects to the matrix:


0 0 0 · · · 0 0 1

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
... · · · ...

...
...

0 0 0 · · · 0 1 0

−1 0 0 · · · 0 0 0




(4.12)

in SO(2r + 1) andX = (1/2)∑r
i=1 er so that e2πiX projects to the matrix:



−1 0 0 · · · 0 0

0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · −1 0

0 0 0 · · · 0 1




(4.13)

in SO(2r + 1). Noww2
z = 1 if and only if 2X is in the coroot lattice. This happens ifr is

even. We may then take

b1,1 = b1,z = bz,1 = bz,z = 0 (4.14)

for evenr and

b1,1 = b1,z = bz,1 = 0, bz,z = θ (4.15)

for odd r. HereU
zn,zn

′
,zn
′′ ≡ 1 for all 0 ≤ n, n′, n′′ ≤ 1. Hencek = 1 andu

zn,zn
′ ≡ 1

solvesEq. (3.28).

4.3. GroupsCr = Sp(2r), r = 2,3, . . .

This is a group composed of unitary(2r) × (2r) matricesU such thatUTΩU = Ω for

Ω built of r blocks

(
0 1

−1 0

)
placed diagonally. Forr = 2, Sp(4) ∼= Spin(5). The Lie

algebrasp(2r) of groupsDr is composed of hermitian(2r)× (2r)matricesX such thatΩX

is symmetric. The Cartan subalgebra may be taken as composed ofr blocks

(
0 −iti
iti 0

)
placed diagonally. Letei denote the matrix corresponding totj = δij . With the invariant
form normalized so that treiej = 2δij , roots ofsp(2r) have the form(1/2)(±ei ± ej) for
i �= j and±ei. The simple roots may be chosen asαi = (1/2)(ei−ei+1) for i = 1, . . . , r−1
andαr = er. The coroots are±ei ± ej for i �= j and±ei. The center ofSp(2r) is Z2 with
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the non-unit elementz = e−2πiθ for θ = λ∨r = (1/2)
∑r
i=1 ei. The permutationzi = r − i

for i = 0,1, . . . , r generates a symmetry of the extended Dynkin diagram:

GroupSp(2r) is simply connected. The adjoint action ofwz on the Cartan algebra is given
by

wzeiw
−1
z = −er−i+1. (4.16)

It may be generated by the product:

rαr rαr−1rαr · · · rα2 · · · rαr−1rαr rα1 · · · rαr−1rαr (4.17)

of r(r + 1)/2 reflections in simple roots. Elementwz may be taken as the matrix:


0 0 0 · · · 0 0 i

0 0 0 · · · 0 i 0

0 0 0 · · · i 0 0
...
...
... · · · ...

...
...

0 i 0 · · · 0 0 0

i 0 0 · · · 0 0 0




(4.18)

in Sp(2r). Setting alsow1 = 1, we infer that

c1,1 = c1,z = cz,1 = 1, cz,z = w2
z = −1= z (4.19)

so that we may take

b1,1 = b1,z = bz,1 = 0, bz,z = θ (4.20)

which results in

U
zn,zn

′
,zn
′′ =

{
1 for (n, n′, n′′) �= (1,1,1),
(−1)r for n = n′ = n′′ = 1.

(4.21)

For r odd, the cocycleU is cohomologically non-trivial. As a result

k =
{

1 for r even,

2 for r odd
(4.22)

and for those values one may takeu
zn,zn

′ ≡ 1 as the solution ofEq. (3.28).
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4.4. GroupsDr = Spin(2r), r = 3,4, . . .

For r = 3, Spin(6) ∼= SU(4). The Lie algebra of groupDr is so(2r) composed of imagi-
nary antisymmetric(2r)×(2r)matrices. The Cartan algebra may be taken as composed ofr

blocks

(
0 −iti
iti 0

)
placed diagonally. In particular, letei denote the matrix corresponding

to tj = δij . With the invariant form normalized so that treiej = δij , roots and coroots of
so(2r) have the form±ei± ej for i �= j. The simple roots may be chosen asαi = ei− ei+1
for i = 1, . . . , r − 1 andαr = er−1+ er.

4.5. Case ofr odd

Here the center isZ4 and it may be generated byz = e−2πiθ with θ = λ∨r = (1/2)
∑r
i=1 ei.

The permutationz0= r − 1, z1= r, zi= r − i for i = 2, . . . , r − 2, z(r − 1) = 1, zr= 0
induces the extended Dynkin diagram symmetry (forr ≥ 5):

SO(2r) = Spin(2r)/{1, z2}. The adjoint action ofwz on the Cartan algebra is given by

wzeiw
−1
z =

{
er for i = 1,

−er−i+1 for i �= 1.
(4.23)

It may be generated by the product:

rαr−1rαr−2rαr · · · rα4 · · · rαr−1rα3 · · · rαr−2rαr rα2 · · · rαr−1rα1 · · · rαr−2rαr (4.24)

of (r(r− 1))/2 reflections in simple roots. Elementwz may be taken as a lift to Spin(2r) of
the matrix:



0 0 · · · 0 1

0 0 · · · 1 0

0 1 · · · 0 0

−1 0 · · · 0 0




(4.25)

in SO(2r). We shall takewzn = wnz for n = 0,1,2,3. Then

czn,zm =
{

1 if n+m < 4,

w4
z if n+m ≥ 4.

(4.26)
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It suffices then to determine the value ofw4
z . Since this element projects to identity in

SO(2r), it is either equal to 1 or toz2. To determine which is the case, note that we may set
wz = Oe2πiXO−1, whereO is an element of Spin(2r) projecting to the matrix:

1√
2




√
2 0 0 0 · · · 0 0 · · · 0 0

0 0 1 0 · · · 0 0 · · · 0 1

0 0 0 1 · · · 0 0 · · · 1 0
...

...
...
... · · · ...

... · · · ...
...

0 0 0 0 · · · 1 1 · · · 0 0

0 0 0 0 · · · 1 −1 · · · 0 0
...

...
...
... · · · ...

... · · · ...
...

0 0 0 1 · · · 0 0 · · · −1 0

0 0 1 0 · · · 0 0 · · · 0 −1

0
√

2 0 0 · · · 0 0 · · · 0 0




(4.27)

andX = (1/4)e1+ (1/2)(e(r+3)/2+ · · · + er) so that e2πiX projects to the matrix:

e2πiX =




0 1 0 0 · · · 0 0 · · · 0 0

−1 0 0 0 · · · 0 0 · · · 0 0

0 0 1 0 · · · 0 0 · · · 0 0

0 0 0 1 · · · 0 0 · · · 0 0
...

...
...
... · · · ...

... · · · ...
...

0 0 0 0 · · · 1 0 · · · 0 0

0 0 0 0 · · · 0 −1 · · · 0 0
...

...
...
... · · · ...

... · · · ...
...

0 0 0 0 · · · 0 0 · · · −1 0

0 0 0 0 · · · 0 0 · · · 0 −1




(4.28)

in SO(2r). It follows thatw4
z = e8πiX = z2 since 4X is not in the coroot lattice. We may

take

bzn,zm =
{

0 if n+m < 4,

2θ if n+m ≥ 4.
(4.29)

This results in

U
zn,zn

′
,zn
′′ = (−1)n

′′(n+n′−[n+n′])/4 (4.30)

for 0 ≤ n, n′, n′′ ≤ 3, where now [m] = mmod 4 with 0≤ [m] ≤ 3. If Z = Z4 thenU
is cohomologically non-trivial, hencek = 2 in this case. On the other hand, the cocycle
(4.30)becomes trivial when restricted to the cyclic subgroup of order 2 generated byz2 so
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thatk = 1 if Z = Z2. In both cases, for the above values ofk, one may takeu
zn,zn

′ ≡ 1 as
the solution ofEq. (3.28).

4.6. Case ofr even

Here the center isZ2 × Z2. It is generated byz1 = e−2πiθ1 andz2 = e−2πiθ2 for θ1 =
λ∨r = (1/2)

(∑r
i=1 ei

)
andθ2 = λ∨1 = e1. These elements induce the permutationsz10= r,

z1i = r − i for i = 1, . . . , r − 1, z1r = 0, z20 = 1, z21 = 0, z2i = i for i = 2, . . . , r − 2,
z2(r− 1) = r, z2r = r− 1 giving rise to the symmetries of the extended Dynkin diagrams:

SO(2r) = Spin(2r)/{1, z2}. The adjoint actions ofwz1 andwz2 on the Cartan algebra are
given by

wz1eiw
−1
z1
= −er−i+1, wz2eiw

−1
z2
=
{
−ei for i = 1, r,

ei for i �= 1, r.
(4.31)

They may be generated by the products:

rαr · · · rα4 · · · rαr−1rα3 · · · rαr−2rαr rα2 · · · rαr−1rα1 · · · rαr−2rαr (4.32)

and

rα1 · · · rαr−2rαr rαr−1 · · · rα2rα1 (4.33)

of, respectively,r(r − 1)/2 and 2(r − 1) reflections in simple roots. Elementswz1 andwz2
may be taken as lifts to Spin(2r) of theSO(2r) matrices:



0 0 0 · · · 0 0 1

0 0 0 · · · 0 1 0

0 0 0 · · · 1 0 0
...
...
... · · · ...

...
...

0 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0

1 0 0 · · · 0 0 0




and




−1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
... · · · ...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 −1



, (4.34)
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respectively. We may set

wz1 = O1 e2πiX1O−1
1 , wz2 = O2 e2πiX2O−1

2 = O1O2 e2πiX2O−1
2 O

−1
1 , (4.35)

whereOi are in Spin(2r) and project to theSO(2r) matrices:

1√
2




1 0 · · · 0 0 · · · 0 1

0 1 · · · 0 0 · · · 1 0
...
... · · · ... ... · · · ...

...

0 0 · · · 1 1 · · · 0 0

0 0 · · · 1 −1 · · · 0 0
...
... · · · ... ... · · · ...

...

0 1 · · · 0 0 · · · −1 0

1 0 · · · 0 0 · · · 0 −1




and




1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...
...
...
... · · · ... ...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1

0 1 0 0 · · · 0 0



,

(4.36)

respectively, withX1 = (1/2)(e(r/2)+1 + · · · + er) andX2 = (1/2)e1. The exponentials
e2πiX1 and e2πiX2 project in turn to the matrices:




1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
... · · · ... ... · · · ...

...

0 0 · · · 1 0 · · · 0 0

0 0 · · · 0 −1 · · · 0 0
...
... · · · ... ... · · · ...

...

0 0 · · · 0 0 · · · −1 0

0 0 · · · 0 0 · · · 0 −1




and




−1 0 0 0 · · · 0 0

0 −1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...
... · · · ... ...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1



,

(4.37)

respectively. Sincew2
zi

projects to 1 inSO(2r) it is equal to 1 or toz2 in Spin(2r). Which is
the case, depends on whether 2Xi is in the coroot lattice. We infer that

w2
z1
=
{

1 if r is divisible by 4,

z2 otherwise,
w2
z2
= z2. (4.38)

Besides,

wz1wz2w
−1
z1
w−1
z2
=O1(e

2πiX1O2 e2πiX2O−1
2 e−2πiX1O2 e−2πiX2O−1

2 )O
−1
1

=O1(e
2πiX1wz2 e−2πiX1w−1

z2
)O−1

1 = O1 e2πierO−1
1 = z2. (4.39)
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Settingw1 = 1 andwz1z2 = wz1wz2, we infer that forr divisible by 4,

cz,z′ =
{
z2 if (z, z′) = (z2, z1), (z2, z2), (z1z2, z1), (z1z2, z2),
1 otherwise

(4.40)

and forr not divisible by 4,

cz,z′=
{
z2 if (z, z′)=(z1, z1), (z1, z1z2), (z2, z1), (z2, z2), (z1z2, z2), (z1z2, z1z2),
1 otherwise.

(4.41)

We may then take forr divisible by 4,

bz,z′ =
{
θ2 if (z, z′) = (z2, z1), (z2, z2), (z1z2, z1), (z1z2, z2),
0 otherwise,

(4.42)

and forr not divisible by 4,

bz,z′=
{
θ2 if (z, z′)=(z1, z1), (z1, z1z2), (z2, z1), (z2, z2), (z1z2, z2), (z1z2, z1z2),
0 otherwise.

(4.43)

Explicit calculation gives

Uz,z′,z′′ =




(−1)1+r/2 for (z, z′, z′′) = (z1z2, z1, z1), (z1z2, z1, z1z2),
(−1)r/2 for (z, z′, z′′) = (z1, z1, z1), (z1, z1, z1z2), (z1, z1z2, z1),

(z1, z1z2, z1z2), (z1z2, z1z2, z1), (z1z2, z1z2, z1z2),

−1 for (z, z′, z′′) = (z2, z1, z1), (z2, z1, z1z2), (z2, z2, z1),
(z2, z2, z1z2), (z1z2, z2, z1), (z1z2, z2, z1z2),

1 otherwise.

(4.44)

The cocycleUk is cohomologically non-trivial ifkr/2 is odd. Ifk is even, it is trivial, and
any 2-cocycleu solvesEq. (3.28). In particular, we may take

uz,z′ =
{
±1 for (z, z′) = (z2, z1), (z2, z1z2), (z1z2, z1), (z1z2, z1z2),
1 otherwise

(4.45)

representing two non-equivalent classes inH2(Z,U(1)). Whenk is odd andr/2 is even
thenUk is cohomologically trivial and

uz,z′ =
{
±i for (z, z′) = (z2, z1), (z2, z1z2), (z1z2, z1), (z1z2, z1z2),
1 otherwise

(4.46)

give two solutions ofEq. (3.28)differing by a non-trivial cocycle(4.45). Hence forZ =
Z2× Z2, k = 1 if r/2 is even andk = 2 for r/2 odd.
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If Z is theZ2 subgroup generated byz1 or by z1z2 then the restriction ofUk to Z is
cohomologically non-trivial ifkr/2 is odd and is trivial ifkr/2 is even. Hencek = 1 if r/2
is even andk = 2 if it is odd. ForZ = Z2 generated byz2, the restriction ofU toZ is trivial
so thatk = 1. One may takeuz,z′ ≡ 1 as the solution ofEq. (3.28)in those cases.

4.7. GroupE6

We shall identify the Cartan algebra of the exceptional groupE6 with the subspace
of R

7 with the first six coordinates summing to zero, with the scalar product inherited
from R

7. The simple roots, may be taken asαi = ei − ei+1 for i = 1, . . . ,5 andα6 =
(1/2)(−e1− e2− e3+ e4+ e5+ e6)+ (1/

√
2)e7, whereei are the vectors of the canonical

bases ofR7. The center ofE6 is Z3 and it is generated byz = e−2πiθ with θ = λ∨5 =
(1/6)(e1+ e2+ e3+ e4+ e5−5e6)+ (1/

√
2)e7. The permutationz0= 1,z1= 5,z2= 4,

z3= 3, z4= 6, z5= 0, z6= 2 induces the symmetry of the extended Dynkin diagram:

The adjoint action ofwz on the Cartan algebra may be generated by setting

wze1w
−1
z = −e6, wze2w

−1
z = −e5, wze3w

−1
z = −e4,

wze4w
−1
z = −e3, wze5w

−1
z = 1

2
(e1+ e2− e3− e4− e5− e6)− 1√

2
e7,

wze6w
−1
z = 1

2
(e1+ e2− e3− e4− e5− e6)+ 1√

2
e7,

wze7w
−1
z = 1√

2
(−e1+ e2) (4.47)

and is given by the product:

rα1rα2rα3rα4rα5rα6rα3rα2rα1rα4rα3rα2rα6rα3rα4rα5 (4.48)

of 16 reflections that may be rewritten as the product of 4 reflectionsrβ1rβ4rβ5rβ2 in
non-simple roots:

β1 = α1+ α2+ α3+ α4, β2 = α3+ α4+ α5+ α6,

β4 = α1+ α2+ α3+ α6, β5 = α2+ α3+ α4+ α5, (4.49)

The family of roots(β1, β2, β3, β4, β5, β6) with

β3 = −α1− α2− 2α3− α4− α5− α6, β6 = α3 (4.50)
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provides another set of simple roots forE6 corresponding to the same Cartan matrix. The
rootsβi with i ≤ 5 and their step generatorse±βi generate anA5 subalgebra ofE6 which,
upon exponentiation, gives rise to anSU(6) subgroup of groupE6. The group elements that
implement by conjugation the Weyl reflectionsrβi of the Cartan algebra ofE6 may be taken
as eπ/2i(eβi + e−βi) so that they belong to theSU(6) subgroup fori ≤ 5. We infer that,
identifying rootsβi for i ≤ 5 with the standard roots ofA5, the elementwz may be taken
as the matrix:



0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0



∈ SU(6) ⊂ E6 (4.51)

which satisfiesw3
z = 1. Setting noww1 = 1 andwz2 = w2

z , we end up with the trivial
cocyclecz,z′ and may takebz,z′ ≡ 0. Consequently, the cocycleU is also trivial andk = 1,
u
zn,zn

′ ≡ 1 solveEq. (3.28).

4.8. GroupE7

The Cartan algebra ofE7 may be identified with the subspace ofR
8 orthogonal to the

vector (1,1, . . . ,1) with the simple rootsαi = ei − ei+1 for i = 1, . . . ,6 andα7 =
(1/2)(−e1 − e2 − e3 − e4 + e5 + e6 + e7 + e8) with ei the vectors of the canonical
basis ofR8. The center ofE7 is Z2 with the non-unit elementz = e−2πiθ for θ = λ∨1 =
(1/4)(3,−1,−1,−1,−1,−1,−1,3). The permutationz0 = 1, z1 = 0, z2 = 6, z3 = 5,
z4= 4, z5= 3, z6= 2, z7= 7 generates the symmetry of the extended Dynkin diagram:

The adjoint action ofwz may by obtained by setting

wzeiw
−1
z = −e9−i (4.52)

and is given by the product:

rα1rα2rα3rα4rα5rα7rα4rα6rα3rα5rα2rα4rα1rα3rα7rα4rα2rα5rα3rα6rα4rα7rα5rα4rα3rα2rα1

(4.53)
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of 27 simple root reflections that may be rewritten as the product of three reflectionsrβ1rβ3rβ7

for

β1 = α1+ 2α2+ 2α3+ 2α4+ α5+ α7 = ω(α1),

β3 = α1+ α2+ 2α3+ 2α4+ α5+ α6+ α7 = ω(α3),

β7 = α1+ α2+ α3+ 2α4+ 2α5+ α6+ α7 = ω(α7), (4.54)

whereω = rα1rα2rα3rα4rα5rα7rα4rα6rα3rα5rα2rα4. The rootsβ1,β3 andβ7 may be completed
to a new system of simple roots ofE7 by setting

β2 = −(α1+ α2+ 2α3+ 2α4+ α5+ α7) = ω(α2),

β4 = −(α1+ α2+ α3+ 2α4+ α5+ α6+ α7) = ω(α4),

β6 = α7 = ω(α6). (4.55)

In particular,β1, β2, β3, β4, β7 and their step generators span a subalgebraA5 ⊂ E7 that,
upon exponentiation, gives rise to a subgroupSU(6) in groupE7. The elementwz imple-
menting by conjugation the Weyl transformation(4.53)may be chosen as



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0



∈ SU(6) ⊂ E7 (4.56)

upon identifying of the rootsβ1, β2, β3, β4, β7 with the standard roots ofA5 = su(6). In
particular,w2

z = −1 ∈ SU(6) or

w2
z = eπi(β1+β3+β7) = (−i,−i,−i,−i,−i,−i,−i,−i) = e2πiθ. (4.57)

With that choice ofwz, we infer that

c1,1 = c1,z = cz,1 = 1, cz,z = w2
z = e2πi θ (4.58)

and we may take

b1,1 = b1,z = bz,1 = 0, bz,z = θ. (4.59)

This leads to

U
zn,zn

′
,zn
′′ =

{
1 for (n, n′, n′′) �= (1,1,1),
−1 forn = n′ = n′′ = 1.

(4.60)

Uk is trivial if k is even and is cohomologically non-trivial whenk is odd. Hencek = 2
and one may takeu

zn,zn
′ ≡ 1 as the solution ofEq. (3.28)for that value ofk.
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5. Conclusions

We have presented an explicit construction of the basic gerbes over groupsG′ = G/Z
whereG is a simple compact connected and simply connected group andZ is a subgroup
of the center ofG. By definition of the basic gerbe, the pullback toG of its curvatureH ′
is the closed 3-formH = (k/12π) tr (g−1 dg)3 with the levelk taking the lowest possible
positive value. The restriction onk came from the cohomologicalequation (3.28)that
assures the associativity of the gerbe’s groupoid product. In agreement with the general
theory, see[7,9], the levelsk of the basic gerbes are the lowest positive numbers for which
the periods ofH ′ belong to 2πZ. They have been previously found in Ref.[5] and we
have recovered here the same set of numbers. The basic gerbe overG′ is unique up to
stable isomorphisms except forG′ = SO(4N)/Z2. In the latter case, using the two different
choices of sign in the solutions(4.45)or (4.46)of the cohomological relation(3.28), one
obtains basic gerbes belonging to two different stable isomorphism classes, the doubling
already observed in Ref.[5]. We plan to use the results of the present paper in order to
extend the classification of the fully symmetric branes in groupsSU(N)/Z worked out in
Ref. [9] to all groupsG′.
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Appendix A

We shall obtain here the condition(3.26)for the associativity of the groupoid productµ′
defined by(3.23). Let (y, y′, y′′, y′′′) ∈ Y ′[4] with (y, zy′, z(z′y′′), z(z′(z′′y′′′))) belonging
to Yijkl and projecting tog ∈ Oijkl . Takingh ∈ G such thatρijkl (g) = hGijkl , we may
completeEqs. (3.17)–(3.19)by

z(z′(z′′y′′′)) = (g, hγ ′′′−1), (A.1)

y′′′ = ((zz′z′′)−1g,hwzwz′wz′′((γ
′′′
z )z′)

−1
z′′ ), (A.2)

z′′y′′′ = ((zz′)−1g,hwzwz′(γ
′′′
z )
−1
z′ ), (A.3)

(z′z′′)y′′′ = (z−1g,hwz(c
−1
z′,z′′γ

′′′
z )
−1), (A.4)

(zz′z′′)y′′′ = (g, h(c−1
zz′,z′′c

−1
z,z′γ

′′′)−1). (A.5)
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TheGijk-orbits inEqs. (3.20)–(3.22)may be now replaced by theGijkl -orbits. We shall need
further line bundle elements. Let

3kzz′ lzz′ = (((zz′)−1g,hwzwz′), [(γ̃
′′
z )z′ , (γ̃

′′′
z )z′ , u

′′]kkzz′ lzz′ )Gizz′ jzz′kzz′ lzz′

= χkl(c̃z,z′)
k(((zz′)−1g,hwzz′), [(c̃

−1
z,z,′ γ̃

′′)zz′ , (c̃
−1
z,z′ γ̃

′′′)zz′ , u
′′]kkzz′ lzz′ )

×Gizz′ jzz′kzz′ lzz′ ∈ Lk
(y′′,z′′y′′′) = L′(y′′,y′′′), (A.6)

where we have used the identifications entering the definition of the line bundleLkzz′3zz′ .
Similarly, let

3il = ((g, h), [γ̃, c̃−1
zz′,z′′ c̃

−1
z,z′ γ̃

′′′,uu′u′′]kil )Gijkl

= χl((δc̃)z,z′,z′′)k((g, h), [γ̃, c̃−1
z,z′z′′(wzc̃

−1
z′,z′′w

−1
z )γ̃

′′′,uu′u′′]kil )Gijkl ∈ Lk
(y,(zz′z′′)y′′′)

=L′(y,y′′′), (A.7)

where the 3-cocycleδc̃ is given by(3.10). Finally, let

3jzlz = ((z−1g,hwz), [γ̃
′
z, c̃

−1
z′,z′′ γ̃

′′′
z , u

′u′′]kjzlz )Gizjzkzlz ∈ Lk
(y′,(z′z′′)y′′′) = L′(y′,y′′′).

(A.8)

Now

µ′(µ′(3ij ⊗ 3jzkz)⊗ 3kzz′ lzz′ ) = u
ijk
z,z′µ

′(3ik ⊗ 3kzz′ lzz′ ) = u
ijk
z,z′u

ikl
zz′,z′′χkl(c̃z,z′)

k3il .

(A.9)

On the other hand,

µ′(3ij ⊗ µ′(3jzkz ⊗ 3kzz′ lzz′ ))

= ujzkzlz
z′,z′′ µ

′(3ij ⊗ 3jzlz ) = ujzkzlzz′,z′′ u
ijl
z,z′z′′χl((δc̃)z,z′,z′′)

−k3il . (A.10)

Equating both expressions we infer condition(3.26).

Appendix B

Proof of Lemma 3. With (uijk
z,z′) given byEq. (3.32)and (uz,z′) solving Eq. (3.28), the

left-hand side of(3.26)becomes

χlz(z′z′′z′′0)(c̃z′,z′′)
−kχl(zz′z′′0)(c̃zz′,z′′)

kχl(zz′z′′0)(c̃z,z′z′′)
−k

χk(zz′0)(c̃z,z′)
kχ(zz′0)(zz′z′′0)(c̃z,z′)

kχzz′z′′0((δc̃)z,z′,z′′)
k. (B.1)

The first factor may be rewritten asχl(zz′z′′0)(wz(c̃z′,z′′)w
−1
z )

−k using the 2nd identity in
(3.24)and combines with the next two to

χl(zz′z′′0)((δc̃)z,z′,z′′)
−kχl(zz′z′′0)(c̃z,z′)

−k

= χl((δc̃)z,z′,z′′)kχzz′z′′0((δc̃)z,z′,z′′)
−kχl(zz′z′′0)(c̃z,z′)

−k. (B.2)
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With the next three factors, it reproduces with the use of property(2.19)the right-hand side
of (3.26). �

Proof of Lemma 2. This proceeds similarly. With the use of the explicit expression(3.29),
the middle term of(3.31)becomes

χ(z′z′′0)(z′z′′z′′′0)(c̃z′,z′′)χ(zz′z′′0)(zz′z′′z′′′0)(c̃zz′,z′′)
−1χ(zz′z′′0)(zz′z′′z′′′0)(c̃z,z′z′′)

χ(zz′0)(zz′z′′z′′′0)(c̃z,z′)
−1χ(zz′0)(zz′z′′0)(c̃z,z′)χz′z′′z′′′0((δc̃)z′,z′′,z′′′)

χzz′z′′z′′′0((δc̃)zz′,z′′,z′′′)
−1χzz′z′′z′′′0((δc̃)z,z′z′′,z′′′)

χzz′z′′z′′′0((δc̃)z,z′,z′′z′′′)
−1χzz′z′′0((δc̃)z,z′,z′′). (B.3)

The first factor is equal toχ(zz′z′′0)(zz′z′′z′′′0)(wzc̃z′,z′′w
−1
z ), see(3.24), and it combines with

the next four ones to

χ(zz′z′′0)(zz′z′′z′′′0)((δc̃)z,z′,z′′) = χzz′z′′0((δc̃)z,z′,z′′)
−1χzz′z′′z′′′0((δc̃)z,z′,z′′), (B.4)

see(2.19) and (2.21). Together with the remaining factors, one obtains, rewriting the sixth
factor asχzz′z′′z′′′0(wz(δc̃z′,z′′,z′′′)w

−1
z ), an expression that reduces to

χzz′z′′z′′′0((δ
2c̃)z,z′,z′′,z′′′) (B.5)

and is equal to 1 due to the triviality ofδ2.
As for the independence of the cohomology class [U] ∈ H3(Z,U(1)) of the choice of

bz,z′ ∈ t, a simple algebra with the use ofEqs. (2.10), (2.20) and (3.24)shows that under
the replacement(3.6), the cocycleU changes toUδu for

uz,z′ = χij (e
2πiaz
ij )χj(e

2πiqz,z′
j ) (B.6)

with i = z0 andj = zz′0. �
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